

HISTORY IN MATHEMATICS EDUCATION

New ICMI Study Series

VOLUME 6

Published under the auspices of the International Commission on Mathematical Instruction under the general editorship of

Hyman Bass, President

Bernard R. Hodgson, Secretary

History in Mathematics Education

The ICMI Study

Edited by

JOHN FAUVEL

*The Open University,
United Kingdom*

and

JAN VAN MAANEN

*University of Groningen,
The Netherlands*

KLUWER ACADEMIC PUBLISHERS
NEW YORK/BOSTON/DORDRECHT/LONDON/MOSCOW

eBook ISBN: 0 306 47220 1
Print ISBN: 0 792 36399 X

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: <http://www.kluweronline.com>
and Kluwer's eBookstore at: <http://www.ebooks.kluweronline.com>

Contents

Introduction	xi
1. The political context	1
1.1 Introduction	1
1.2 What part does history of mathematics currently occupy in national curricula?	2
1.2.1 Argentina	2
1.2.2 Austria	3
1.2.3 Brazil	3
1.2.4 China	4
1.2.5 Denmark	5
1.2.6 France	7
1.2.7 Greece	8
1.2.8 Israel	9
1.2.9 Italy	9
1.2.10 Japan	10
1.2.11 Netherlands	11
1.2.12 New Zealand	12
1.2.13 Norway	14
1.2.14 Poland	15
1.2.15 United Kingdom	16
1.2.16 United States of America	18
1.3 History of mathematics in curricula and schoolbooks: a case study of Poland	19
1.3.1 History of mathematics in mathematics curricula	20
1.3.2 History of mathematics in mathematics school-books	21
1.3.3 Final remarks	28
1.4 Policy and politics in the advocacy of a historical component	29
1.4.1 Political authorities (at all levels)	31
1.4.2 Teacher associations	31
1.4.3 Professional mathematics associations	32
1.4.4 Tertiary teachers	32
1.4.5 Parents	33
1.4.6 Textbook authors	33
1.5 Quotations on the use of history of mathematics in mathematics teaching and learning	33

2 . Philosophical, multicultural and interdisciplinary issues	39
.....
2.1 Introduction	39
2.2 Philosophical issues	40
2.2.1 Historical investigation, evidence and interpretation	40
2.2.2 Philosophy of mathematics, old and new	42
2.2.3 The ends of the spectrum	44
2.3 Multicultural issues	46
2.3.1 Introduction	46
2.3.2 Multiculturalism inside the history of mathematics	47
2.3.3 Mathematics as a human enterprise	50
2.4 Interdisciplinary issues	52
2.4.1 Introduction	52
2.4.2 History of mathematics and the study of history	53
2.4.3 History of mathematics linking topics within mathematics	53
2.4.4 History of mathematics linking mathematics with other disciplines	55
2.5 Conclusion	61
3. Integrating history: research perspectives	63
.....
3.1 Introduction	63
3.2 The historical dimension: from teacher to learner	66
3.3 The indirect genetic approach to calculus	71
3.4 Stochastics teaching and cognitive development	74
3.5 Ancient problems for the development of strategic thinking	78
3.6 Difficulties with series in history and in the classroom	82
3.7 On potentialities, limits and risks	86
3.8 Suggestions for future research	90
4. History of Mathematics for Trainee Teachers	91
.....
4.1 Earlier views on history in teacher education	91
4.2 International overview	93
4.3 Examples of current practice	110
4.3.1 Current practice in initial teacher training	110
4.3.2 Current practice in in-service training	131
4.4 Issues of Concern	140

5. Historical formation and student understanding of mathematics	143
5.1 Introduction	143
5.2 The role of historical analysis in predicting and interpreting students' difficulties in mathematics	149
5.3 The relevance of historical studies in designing and analysing classroom activities	154
5.3.1 Bringing historical texts into the classroom: the 'voices and echoes' games	155
5.3.2 Indirect use of historical and epistemological studies in the design of activities for students	156
5.3.3 The example of linear algebra	157
5.3.4 The example of calculus	159
5.3.5 Research on the methodology of history-based design of activities for students	160
5.4 Epistemological assumptions framing interpretations of students' understanding of mathematics	162
5.4.1 The 'epistemological obstacles' perspective	162
5.4.2 A socio-cultural perspective	163
5.4.3 The 'voices and echoes' perspective	165
5.5 Conclusions: guidelines and suggestions for future research	168
6. History in support of diverse educational requirements – opportunities for change	171
6.1 Introduction	171
6.2 Educational, cultural, social and economic diversity in primary, secondary and tertiary settings	172
6.2.1 Primary education and the use of mathematics history in the classroom	172
6.2.2 Under-served (limited resources) students	174
6.2.3 Alternative educational pathways: adult learners returning to mathematics education, vocational education and training	179
6.2.4 Minority school populations	184
6.2.5 Students having educational challenges	187
6.2.6 Mathematically gifted and talented students	188
6.3 Opportunities for change	195
6.3.1 Teacher education	195
6.4 Conclusion	199
7. Integrating history of mathematics in the classroom: an analytic survey	201
7.1 Introduction	201
7.2 Why should history of mathematics be integrated in mathematics education?	202

7.3	How may history of mathematics be integrated in mathematics education?	208
7.3.1	Direct historical information	208
7.3.2	A teaching approach inspired by history	208
7.3.3	Mathematical awareness	211
7.4	Ideas and examples for classroom implementation	213
7.4.1	Historical Snippets	214
7.4.2	Student research projects based on history texts	215
7.4.3	Primary Sources	216
7.4.4	Worksheets	216
7.4.5	Historical packages	217
7.4.6	Taking advantage of errors. alternative conceptions. change of perspective. revision of implicit assumptions. intuitive arguments etc	219
7.4.7	Historical problems	224
7.4.8	Mechanical instruments	227
7.4.9	Experiential mathematical activities	228
7.4.10	Plays	229
7.4.11	Films and other visual means	230
7.4.12	Outdoor experiences	231
7.4.13	The WWW	232
8.	Historical support for particular subjects	241
8.1	Introduction	241
8.2	Teaching projects inspired by history	243
8.2.1	Examples from algebra and analysis	243
8.2.2	A heuristic introduction to analysis implicitly inspired by its historical development	245
8.2.3	How may history help the teaching of probabilistic concepts?	248
8.2.4	Trigonometry in the historical order	252
8.3	Cultural aspects of mathematics in a historical perspective	253
8.3.1	Number systems and their representations	253
8.3.2	The Pythagorean theorem in different cultures	258
8.3.3	Measuring distances: Heron vs. Liu Hui	262
8.4	Detailed treatment of particular examples	264
8.4.1	Introducing complex numbers: an experiment	264
8.4.2	Intertwining a mathematical topic with other (non-) mathematical topics	265
8.4.3	Surveyors' problems	273
8.4.4	Theory of proportion and the geometry of areas	276
8.4.5	Deductive vs intuitive thinking: an example from the calculus	279
8.4.6	Tracing the root of the abstract concept of a set.....	281
8.4.7	Discrete mathematics: an example	282
8.4.8	The relation between geometry and physics: an example	283

8.5 Improving mathematical awareness through the history of mathematics	286
8.5.1 History of mathematics education	286
8.5.2 Teaching secondary mathematics in a historical perspective	288
8.5.3 Adults' mathematics educational histories	289
 9. The use of original sources in the mathematics classroom	 291
9.1 Introduction	291
9.2 Motivations, aims and uses	292
9.2.1 The specific value and quality of primary sources	292
9.2.2 Understanding the evolution of ideas	294
9.2.3 Experiencing the relativity of truth and the human dimension of mathematical activity	295
9.2.4 Relations between mathematics and philosophy	296
9.2.5 Simplicity, motivation and didactics	297
9.2.6 Perspectives on mathematics education	297
9.2.7 Local Mathematics	298
9.3 Sources, hermeneutics and language	298
9.4 Integrating original sources in pre-service teacher education	299
9.4.1 Example 1: Egyptian measures of angles	299
9.4.2 Example 2: complex numbers in geometry and algebra	303
9.5 Integrating Original Sources in the Classroom	307
9.5.1 Example 1: Greek surveying: the tunnel of Samos	307
9.5.2 Example 2: An 18th century treatise on conic sections	310
9.6 Didactical strategies for integrating sources	313
9.6.1 The triad: text - context - reader	313
9.6.2 Classroom strategies	313
9.7 Evaluation, research questions and issues of concern	316
 10. Non-standard media and other resources	 329
10.1 Introduction	329
10.1.1 Why other media?	329
10.1.2 And which media?	330
10.1.3 Affect and effect	331
10.1.4 Media and cognitive aspects of learning	333
10.1.5 Media and assessment	334
10.2 Learning through history and non-standard media	335
10.2.1 Mathematical Dramatisation	335
10.2.2 Ancient instruments in the modern classroom	343

10.2.3	Inquiring mathematics with history and software	351
10.3	Resources for history of mathematics on the World Wide Web	358
10.3.1	Teachers, learners and the World Wide Web	358
10.3.2	Web historical resources for the mathematics teacher	362
 11. Bibliography for further work in the area		
	371
11.1	Introduction	371
11.2	Chinese	373
11.3	Danish	383
11.4	Dutch	386
11.5	English	389
11.6	French	404
11.7	German	405
11.8	Greek	411
11.9	Italian	414
11.10	Collections of articles (special issues)	416
1 1.10.1	Journals (special issues)	416
1 1.10.2	Books.....	417
 Notes on contributors		419
 Index		429

Introduction

John Fauvel & Jan van Maanen

When the English mathematician Henry Briggs learned in 1616 of the invention of logarithms by John Napier, he determined to travel the four hundred miles north to Edinburgh to meet the discoverer and talk to him in person. The meeting of Briggs and Napier is one of the great tales in the history of mathematics. According to William Lily, who had it from Napier's friend John Marr, it happened when Napier had given up hope of seeing his long-awaited southern guest:

It happened one day as John Marr and Lord Napier were speaking of Mr. Briggs "Ah John", saith Marchiston, "Mr. Briggs will not come." At the very instant one knocks at the gate. John Marr hastened down, and it proved Mr Briggs, to his great contentment. He brings Mr. Briggs to my Lord's chamber, where almost one quarter of an hour was spent each beholding the other with admiration, before one spoke: at last Mr. Briggs began: "My lord, I have undertaken this long Journey purposely to see your Person, and to know by what Engine of Wit or Ingenuity you came first to think of this most excellent Help unto Astronomy, *viz.*, the *Logarithms*; but, my Lord, being by you found out, I wonder nobody else found it out before, when now known it is so easy." He was nobly entertained by Lord Napier, and every summer after this, during Lord Napier's being alive, this venerable man, Mr. Briggs. went to Scotland to visit him.

The many layers of significance of this story make it an invaluable resource for mathematics teachers at all levels. For younger pupils, the idea of two grown men sitting looking at each other in silence for fifteen minutes on first meeting is sufficiently strange to provoke mirth and a vivid sense of how important mathematical ideas were to them. Pupils need no knowledge of logarithms to recognise from this that mathematics is something which has been invented by people at particular stages of history, not something which has always been there. Questions arise for young pupils too about the practicalities of life in old times, about travelling long distances as well as how before the days of photographs and television people generally had no accurate idea of what each other looked like unless they met in the flesh. Some may notice that in ancient times people were sometimes called by their name ('Napier') and sometimes by where they lived ('Marchiston'), as Napier lived in a castle called Marchiston Castle. It is in elementary and middle school, too, that teachers can introduce pupils to another of Napier's inventions, his 'rods' or 'bones' for speeding up multiplication. These lay bare the structure of multiplying in the decimal place-value numeral system (Hindu-Arabic numbers, as we call them) in a way which deepens student understanding and memorisation of the process.

Older pupils who are beginning to learn about logarithms are reinforced in understanding their importance, through reflecting on the lengths to which Briggs went in wanting to meet and admire their discoverer. Or were logarithms invented, not discovered? Teachers can explain how arduous calculations could be before logarithms, and tell pupils of Kepler's remark that thanks to Napier the astronomer's life-span had been doubled. This invention is a microcosm of the activity of mathematicians down the ages: the *point* of mathematics is to make things happen more easily and to save people trouble. (This revelation will be quite surprising to some pupils!-or at least to their parents with unhappy memories of their school mathematics lessons.) The possible benefits of the story work on a number of levels. Once students know, for example, how happy the astronomer was when multiplication of two ten-digits numbers reduced to a simple addition, they will never have a problem in remembering which is the correct rule: $\log ab = \log a + \log b$, not $\log(a+b) = \log a \times \log b$.

Senior students will begin to recognise just how significant logarithms are: that a device for easing the activity of calculating turns out to be one of the most influential and far-reaching of ideas in all of mathematics, a function of immense power and reach which pulls together ideas from different areas of mathematics. This illuminates another general truth about the amazing power of mathematics, the way different parts of it reinforce each other. Here, it is little short of miraculous how ideas from ancient Greece (curves from slicing cones, called conic sections), from early seventeenth century Scotland, and from later in the seventeenth century (a general method for finding the areas bounded by curves) all come together to generate a complex of mathematics of great power, and the student who is trained to understand and share in these ideas is immensely empowered as a result.

Trainee teachers reflecting on the story can absorb all these resonances and also notice what the story of Briggs's meeting with Napier tells us about the psychology of learning mathematics: it is every pupil's experience that once some difficult idea has been learned it seems so natural that you cannot understand why you did not understand it before! The concept of an "Engine of Wit or Ingenuity" is a very deep one. The apparent tension in this phrase between mechanical and psychological images is characteristic of the seventeenth century, prefiguring perhaps the 'mechanical philosophy' promoted by René Descartes and others a few decades later.

There are lessons for those designing mathematics education syllabuses too. The curriculum designer will appreciate that an apparently straightforward observation made by several mathematicians from Archimedes onwards, that multiplying numbers can correspond to adding powers of another number, or more simply that geometrical and arithmetical series can run in parallel, took many centuries to be recognised as a key perception to build upon for calculational purposes. The curricular implications may be (put in a rather general way) that what seems simple after the event can pose difficulties for students until they are prepared for new ways of looking at things.

This one short tale from four centuries ago can in this way be seen to lay the grounding for a number of valuable interactions between teacher and student in the mathematics classroom over several school years. A teacher able to support,

encourage and lead students in this way through their school career is a better teacher: better prepared, better resourced, more empowered. History, we might say, is an Engine of Mathematical Wit. This story, and the pedagogical reflections which it generates, are to this extent a microcosm of what we hope the present book will achieve.

The background to this study

Does history of mathematics have a role in mathematics education? This book has been made by people who believe that the answer is positive, that the history of mathematics can play a valuable role in mathematical teaching and learning. It is the report of a study instigated by the International Commission on Mathematical Instruction (ICMI). We describe later how the study was carried out, but first sketch the problem setting of the study, the general background of concerns from several quarters which have led to a flourishing of work in this area in recent decades.

Mathematicians, historians and educators in many countries have long thought about whether mathematics education can be improved through incorporating the history of mathematics in some way. This arises from the recognition that mathematics education does not always meet its aims for all pupils, and that so long as some students emerge from their education with less understanding of mathematics than might be useful for them, or indeed with an actual fear or phobia about mathematics, then it is worth exploring possible avenues for improving the process. Nor have they only thought about the possibility of using history; many teachers in classrooms across the world have tried out various pedagogic possibilities. It soon emerges that there is a wide range of views and experiences of how history of mathematics can help. Some educators believe that mathematics is intrinsically historical: so learning the subject must involve its history, just as studying art involves learning about art history. Others see a number of ways in which history can aid the teacher's, and thus the learner's, task, from the apparently banal (such as giving more information about the names students may meet—which, by the way, are often wrong attributions in any case, as in the cases of Pascal's triangle and L'Hôpital's rule, not to speak of Pythagoras' theorem) to a deeper way of teaching mathematics in a historical vein.

It is not only teachers who are concerned with perceived failings in school and college mathematics. Parents, employers and politicians all vie repeatedly in urging attention to the system's ability to deliver enough students passing mathematics examinations. Whatever the truth behind such fears and concerns, resolving them is evidently a political matter, and thus adoption of the contribution offered by this Study, to improve mathematics education through the provision and use of historical resources, is a political choice to be made or influenced at any or all of the several layers of decision-making in complex modern societies.

The ICMI Study

ICMI, the International Commission on Mathematical Instruction, was established in 1908 at the International Congress of Mathematicians held in Rome, its first chair being Felix Klein. After an interruption of activity between the two World Wars, it was reconstituted in 1952 as a commission of the International Mathematical Union

(IMU). The IMU itself was formed at the 1920 International Congress of Mathematicians, held in Strasbourg. The history of these international bodies is thus closely linked with twentieth century internationalisation of mathematical activity, in particular with the efforts of mathematicians to re-energise international co-operation after major wars, as part of the healing and reconciliation process and in a spirit of optimism about building a better future for everyone. In 1972, at the second International Congress on Mathematical Education in Exeter, UK, the idea was developed of an International Study Group on the Relations between History and Pedagogy of Mathematics, which was formally affiliated to ICMI at the 1976 International Congress (ICME-3) at Karlsruhe, Germany. HPM has continued ever since to explore and advise on these relations through the activities of its members, who are mathematics educators, teachers and historians across the world., who are mathematics educators, teachers and historians across the world.

Since the mid 1980s ICMI has engaged in promoting a series of studies on essential topics and key issues in mathematics education, to provide an up-to-date presentation and analysis of the state of the art in that area. The tenth ICMI Study, whose report is presented in the present volume, was conceived in the early 1990s in order to tease out the different aspects of the relations between history and pedagogy of mathematics, in recognition of how the endeavours of how the *HPM* Study Group had encouraged and reflected a climate of greater international interest in the value of history of mathematics for mathematics educators, teachers and learners. Concerns throughout the international mathematics education community began to focus on such issues as the many different ways in which history of mathematics might be useful, on scientific studies of its effectiveness as a classroom resource, and on the political process of spreading awareness of these benefits through curriculum objectives and design. It was judged that an ICMI Study would be a good way of bringing discussions of these issues together and broadcasting the results, with benefits, it is to be hoped, to mathematics instruction world-wide.

ICMI Studies typically fall into three parts: a widely distributed *Discussion Document* to identify the key issues and themes of the study; a *Study Conference* where the issues are discussed in greater depth; and a *Study Volume* bringing together the work of the Study so as to make a permanent contribution to the field. The current study has followed this pattern.

The *Discussion Document* was drawn up by the two people invited by ICMI to co-chair the Study, John Fauvel (Open University, UK; HPM chair 1992-1996) and Jan van Maanen (University of Groningen, Netherlands; HPM chair 1996-2000), with the assistance of the leading scholars who formed the International Programme Committee: Abraham Arcavi (Israel), Evelyne Barbin (France), Jean-Luc Dorier (France), Florence Fasanelli (US, HPM Chair 1998-1992), Alejandro Garciadiego (Mexico), Ewa Lakoma (Poland), Mogens Niss (Denmark) and Man-Keung Siu (Hong Kong). The Discussion Document was widely published, in for example the *ICMI Bulletin* 42 (June 1997), 9-16, and was translated into several other languages including French, Greek and Italian. From the responses and from other contacts, some eighty scholars were invited to a Study Conference in the spring of 1998, an invitation which in the event between sixty and seventy were able to accept.

The *Study Conference* took place in the south of France, at the splendid country retreat of the French Mathematical Society, CIRM Luminy (near Marseille), from 20 to 25 April 1998. Local organisation was in the hands of Jean-Luc Dorier (University of Grenoble). The scholars attending were from a variety of backgrounds: mathematics educators, teachers, mathematicians, historians of mathematics, educational administrators and others. This rich mix of skills and experiences enabled many fruitful dialogues and contributions to the developing study.

The means by which the Study was advanced, through the mechanism of the Conference, is worth description and comment. Most participants in the Conference had submitted papers, either freshly written or recent position papers, for the others to read and discuss, and several studies were made available by scholars not able to attend the meeting. These, together with whatever personal qualities and experiences each participant was bringing to the Conference, formed the basis for the work. Apart from a number of plenary and special sessions, the bulk of the Conference's work was done through eleven working groups, corresponding, in the event, to the eleven chapters of the Study Volume. Each participant belonged to two groups, one meeting in the mornings and one in the afternoons. Each group was led by a convenor, responsible for co-ordinating the group's activities and playing a major part in the editorial activity leading to the eventual chapters of the book. Each group's work continued for several months after the Conference, with almost everyone participating fully in writing, critical reading, bibliographical and other editorial activities.

This way of group working for a sustained period towards the production of a book chapter was a fresh experience to many participants, since the pattern of individual responsibility for separate papers is a more common feature of such meetings and book productions. In this instance the participants proved remarkably adept at using the new structures to come up with valuable contributions to the development of the field, all the more valuable for their being the results of consensual discussions and hard-written contributions, which have been edited and designed into the present Study Book.

Authorship of contributions

As just explained, this ICMI Study adopted a style of collective group work in which international teams worked together on the various issues, each led by a convenor, whose reports form the basis of the chapters in this book. We have experienced this as a very useful and productive way of working for the teachers, educators and researchers involved, who were able to share insights, experiences and ideas, and develop strategies together for future progress in the field. It follows from the working style that it is not quite as straightforward as usual to attribute responsibility and authorship to particular sections of text. As will be seen, each chapter is credited to a team, listed in alphabetical order, headed by the name of the chapter co-ordinator. Within the chapters, sometimes names may appear as responsible for subsections and sometimes not. In the construction of the book some sections retained individual responsibility (while commented on and modified by the help of the rest of the group), and others were by the end of the process a genuinely

group or sub-group collaboration (while initially drafted by an individual, as is almost always the case).

An intercontinental discussion at the ICMI Study conference in Luminy, France: Vicky Ponza (Argentina), Daina Taimina (Latvia), Florence Fasanelli (USA), Chris Weeks

Among the considerations here are that readers often find it easier and more welcoming to consider a particular text as written by a person rather than a collective; and that a named author is able to use the word “I” in a text, which is a user-friendly form of address, where appropriate and natural, rather than the forced third-person or first-person-plural style of scientific texts. Another consideration is, of course, that individuals should receive credit for their contributions, particularly in the institutional imperatives of today. But the overall message to readers is that this book represents an act of collective scholarship all of whose contributors shared in its production.

The purpose of the ICMI Study

This book has several functions, namely to

- (i) survey and assess the present state of the whole field;
- (ii) provide a resource for teachers and researchers, and for those involved with curriculum development;
- (iii) indicate lines of future research activity;
- (iv) give guidance and information to policy-makers about issues relating to the use of history in pedagogy.

These functions are variously carried out through the eleven chapters which follow. Each chapter has a very short abstract, which is not only a summary of the ensuing

chapter but can be seen to form a sentence or paragraph in a story which as in some Victorian novel can be seen as “The Argument Of This Book”.

The argument of this book

People have studied, learned and used mathematics for over four thousand years. Decisions on what is to be taught in schools, and how, are ultimately political, influenced by a number of factors including the experience of teachers, expectations of parents and employers, and the social context of debates about the curriculum. The ICMI study is posited on the experience of many mathematics teachers across the world that its history makes a difference: that having history of mathematics as a resource for the teacher is beneficial. School mathematics reflects the wider aspect of mathematics as a cultural activity.

From the philosophical point of view, mathematics must be seen as a human activity both done within individual cultures and also standing outside any particular one. From the interdisciplinary point of view, students find their understanding both of mathematics and their other subjects enriched through the history of mathematics. From the cultural point of view, mathematical evolution comes from a sum of many contributions growing from different cultures.

The question of judging the effectiveness of integrating historical resources into mathematics teaching may not be susceptible to the research techniques of the quantitative experimental scientist. It is better handled through qualitative research paradigms such as those developed by anthropologists.

The movement to integrate mathematics history into the training of future teachers, and into the in-service training of current teachers, has been a theme of international concern over much of the last century. Examples of current practice from many countries, for training teachers at all levels, enable us to begin to learn lessons and press ahead both with adopting good practices and also putting continued research effort into assessing the effects.

The use of history of mathematics in the teaching and learning of mathematics requires didactical reflection. A crucial area to explore and analyse is the relation between how students achieve understanding in mathematics and the historical construction of mathematical thinking. The needs of students of diverse educational backgrounds for mathematical learning are increasingly being appreciated. Using historical resources, teachers are better able to support the learning of students in such diverse situations as those returning to education, in under-resourced schools and communities, those with educational challenges, and mathematically gifted students.

An analytical survey of how history of mathematics has been and can be integrated into the mathematics classroom provides a range of models for teachers and mathematics educators to use or adapt. Further specific examples of using historical mathematics in the classroom both support and illustrate these arguments, and indicate the ways in which the teaching of particular subjects may be supported by the integration of historical resources.

The study of original sources is the most ambitious of ways in which history might be integrated into the teaching of mathematics, but also one of the most rewarding for students both at school and at teacher training institutions. The

integration of history is not confined to traditional teaching delivery methods, but can often be better achieved through a variety of media which add to the resources available for learner and teacher. A considerable amount of work has been done in recent decades on the subject of this study, which is here summarised, in the form of an annotated bibliography, for works appearing in eight languages of publication.

Acknowledgements

In any enterprise such as this the support, vision and confidence of a number of kind people is invaluable for making the project happen. As well as the contributors who worked so hard and without whom this Study would not have happened, we want here to thank the former chairs of HPM, Ubiratan D'Ambrosio and Florence Fasanelli, for their vision of such a study; the successive secretaries of ICMI, Mogens Niss and Bernard Hodgson, for their continued support and enthusiasm for the project; Jean-Luc Dorier for his faultless and energetic organisation of the Study Conference; the Société Mathématique de France for generously making available the facilities of its splendid conference centre at Luminy for the Study Meeting; Joy Carp and Irene van den Reydt of Kluwer for their flexible and constructive help in ensuring the book production took place so efficiently; Liz Scarna of the Open University for her sterling electronic assistance behind the scenes; and all friends and families of all the contributors for tolerating and encouraging a production which took up more time than they may have expected or welcomed.